A Spectral Representation for Max-stable Processes
نویسندگان
چکیده
منابع مشابه
Exact and Fast Simulation of Max-Stable Processes on a Compact Set Using the Normalized Spectral Representation
The efficiency of simulation algorithms for max-stable processes relies on the choice of the spectral representation: different choices result in different sequences of finite approximations to the process. We propose a constructive approach yielding a normalized spectral representation that solves an optimization problem related to the efficiency of simulating max-stable processes. The simulat...
متن کاملSpectral representation of some non stationary α-stable processes
In this paper, we give a new covariation spectral representation of some non stationary symmetric α-stable processes (SαS). This representation is based on a weaker covariation pseudo additivity condition which is more general than the condition of independence. This work can be seen as a generalization of the covariation spectral representation of processes expressed as stochastic integrals wi...
متن کاملLikelihood-based inference for max-stable processes
The last decade has seen max-stable processes emerge as a common tool for the statistical modelling of spatial extremes. However, their application is complicated due to the unavailability of the multivariate density function, and so likelihood-based methods remain far from providing a complete and flexible framework for inference. In this article we develop inferentially practical, likelihood-...
متن کاملMax-stable Processes and Spatial Extremes
Max-stable processes arise from an infinite-dimensional generalisation of extreme value theory. They form a natural class of processes when sample maxima are observed at each site of a spatial process, a problem of particular interest in connection with regional estimation methods in hydrology. A general representation of max-stable processes due to de Haan and Vatan is discussed, and examples ...
متن کاملExtremal stochastic integrals: a parallel between max–stable processes and α−stable processes
We construct extremal stochastic integrals ∫ e E f(u)Mα(du) of a deterministic function f(u) ≥ 0 with respect to a random α−Fréchet (α > 0) sup–measure. The measure Mα is sup–additive rather than additive and is defined over a general measure space (E, E , μ), where μ is a deterministic control measure. The extremal integral is constructed in a way similar to the usual α−stable integral, but wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1984
ISSN: 0091-1798
DOI: 10.1214/aop/1176993148